Empfohlenes Webinar: KI-gestütztes API-Testing: Ein No-Code-Ansatz zum Testen | Zum Video
Zum Abschnitt springen
Messung der Auswirkungen der Testautomatisierung auf die Softwarequalität
Vermeiden Sie Fehler in der Softwarequalität, indem Sie früher im SDLC testen und automatisieren. Hier ist ein ausführlicher Leitfaden, wie Unternehmen die Auswirkungen der Testautomatisierung auf die Softwarequalität messen können.
Zum Abschnitt springen
Zum Abschnitt springen
Justyn Trenner, der sich selbst als „zufälliger Technologe“ bezeichnet, fungiert als Corporate Development Director für QA Financial, ein Unternehmen, das sich auf DevOps, Automatisierung und KI-Technologien konzentriert. Das 2015 gegründete Unternehmen möchte die Art und Weise verbessern, wie E-Commerce- und Finanzunternehmen die Softwareentwicklung, -prüfung und -bereitstellung überwachen, entdecken und angehen.
Bei einem solchen Fokus ist es kein Wunder, dass einige ihrer Partner Unternehmen aus der ganzen Welt umfassen, darunter Eggplant, IBM und Parasoft. Ihre Partnerschaft mit der Bank of England konzentriert sich auf digitale Resilienz und die Rolle inspizierbarer Benchmarks in DevOps.
QA Financial erkennt das an Automatisierung und automatisiertes Testen sind Schlüsselinstrumente zur Minderung von Risiken im Entwicklungsprozess. Denn wenn Sie Probleme frühzeitig erkennen, können Sie Katastrophen bei der Bereitstellung und Datenschutzverletzungen besser vermeiden.
Die Auswirkungen und Vorteile der Virtualisierung
zu Qualitäts- und Leistungsbenchmarks
Lehren von ING & Bank of America
Die Herausforderungen
Qualitätsmängel können zu kostspieligen Reparaturen und auch zum Verlust von nicht quantifizierbaren Dingen wie dem Vertrauen in Produkte oder Dienstleistungen führen. Obwohl es ein wichtiger Teil der Softwareentwicklung ist, wie können Sie die Effektivität eines Quality-Engineering-Ansatzes demonstrieren?
Und was noch wichtiger ist: Wie ermitteln Sie einen Return on Investment (ROI), um zu erkennen, welches Budget und welche Anstrengungen die richtigen Investitionen sind, um eine konsistente Qualitätsleistung zu versprechen?
„API-Tests und -Korrekturen können doppelt so hohe Qualitätsausgaben pro Fehler ausmachen wie andere Fehler. Die Datenbereitstellung ist auch eine Hauptquelle für Verschwendung (ineffektive Entwicklung) und doppelte Ausgaben.“
– Justyn Trenner, QA Finanzen
Nutzung QA Vector® Analytik hat Unternehmen dabei geholfen, ihre optimale Ausgabenzuweisung zu bestimmen, welchen Anbieter sie verwenden sollten und welches Betriebsmodell für sie am besten geeignet ist. Obwohl KI eine Schlüsselrolle spielt, dreht sich die Grundlage der Methodik um Risikovorhersage, Belastbarkeit und pünktliche Leistung.
Bei Fragen zur betrieblichen Belastbarkeit ist die Frage der Kurzschriftstandards von entscheidender Bedeutung. Es dreht sich um mehrere Schlüsselfragen.
- Wie zeigt man den ROI für Qualitätsbemühungen?
- Woran erkennt man Verbesserungen?
- Wie vergleiche ich verschiedene Ansätze?
- Wie verbindet man Qualität mit Geschäftsergebnissen?
- Wie kann man einer Regulierungsbehörde die Qualitätskonformität nachweisen?
Die QA Vector Analytics von QA Financial bietet die Mittel, um diese Fragen zu beantworten und so die digitale Widerstandsfähigkeit mit überprüfbaren Benchmarks zu verbessern.
Erfahren Sie, wie Ihr Team diese Benchmarks implementieren kann, um den ROI in Bezug auf Qualität besser darzustellen. Sehen Sie sich Justyns Präsentation an, Benchmarking des Werts von Quality Engineering, an der 2021 Automated Software Testing & Quality Summit. Sehen Sie, warum das alte Sprichwort „Geschwindigkeit. Kosten. Qualität. Nimm zwei, weil du nicht alle drei haben kannst“, gilt nicht mehr, wenn es um Software geht.
Benchmarking des Werts von Quality Engineering
Versteckte Kosten und ineffiziente Mittelverwendung
Es kann schwierig erscheinen, zu quantifizieren, wie viel Sie für Qualitätsbemühungen ausgeben sollten. Die Daten zeigen, dass API-Tests und -Reparaturen doppelt so hohe Kosten pro Fehler verursachen können wie andere Fehlerarten. Dies führt dazu, dass Zeit, Mühe und Budget für ineffiziente Verfahren und leicht zu behebende Probleme verschwendet werden, die vorher hätten behandelt werden können.
Obwohl es anfangs wie ein guter Ansatz erscheinen mag, Abstriche zu machen oder bei dem zu bleiben, was Sie immer verwendet haben, kann es Sie am Ende viel Geld, Talent, Kundenstamm oder alle drei kosten. QA Vector Analytics befähigt Finanzunternehmen und Institutionen dazu Qualitätsleistung messen gegen Konkurrenten und Peers über Projekte und Entwicklungsansätze hinweg.
Die Auswirkungen und Vorteile der Virtualisierung
zu Qualitäts- und Leistungsbenchmarks
Lehren von ING & Bank of America
Die Vorgehensweise
Bei dem Versuch, parsbare Standards für hochwertige ROI-Messungen zu erstellen, bestand die größte Hürde darin, zu sehen, wie sich die Methodik eines Teams auf die Entwicklung auswirkte. Denn was für ein Team gut funktioniert, kann für ein anderes völlig unmöglich sein.
Wasserfall-Modell
Diese traditionelle Methodik für die Softwareentwicklung wird häufig von Unternehmen auf Unternehmensebene wegen ihres linearen Ablaufs mit definierten Zielen verwendet.
Bevor die nächste Phase beginnen kann, muss die vorherige vollständig abgeschlossen sein. Es gibt auch keine Möglichkeit, zurückzugehen und das Projekt zu ändern. Diese Starrheit kann zu einer kostspieligen und langsamen Entwicklung führen.
Agil
Die Agile-Methodik ist eine gängige Option, die es Entwicklungsteams ermöglicht, Risiken wie Kostenüberschreitungen, Fehler und Anforderungsänderungen zu minimieren, wenn sie neue Funktionalitäten hinzufügen. Das bedeutet, dass Teams Änderungen in kleinen Schritten und Iterationen vorantreiben. Beispiele sind Crystal, Scrum, Feature-Driven Development (FDD) und mehr.
Schnelle Anwendungsentwicklung (RAD)
Dieser kondensierte Prozess ist in der Regel mit geringen Investitionskosten verbunden und erzeugt dennoch ein qualitativ hochwertiges Produkt. RAD enthält nur vier Phasen. RAD ist zwar schnell und großartig für Projekte mit klar definierten Zielen, erfordert aber ein sehr stabiles Team erfahrener Entwickler.
Solch ein tiefgreifender Wissensbedarf und die Fähigkeit, bei Bedarf schnell zu arbeiten und umzuschwenken, sind möglicherweise nicht für jedes Team geeignet.
Hybride DevOps
DevOps ist sowohl eine Reihe von Praktiken zur Unterstützung der Unternehmenskultur als auch eine Entwicklungsmethodik. Im Kern konzentriert sich dieser Ansatz auf die Zusammenarbeit, die Verbesserung der Markteinführungszeit und die Reduzierung der Ausfallraten für neue Versionen.
Die Automatisierung von Continuous Delivery bedeutet oft die Automatisierung von Continuous Testing, was Teams hilft, Bugs und potenzielle Bedrohungen früher im Prozess zu erkennen. Manuelles Testen ist jedoch neben automatisiertem Testen immer noch ein entscheidender Teil des Prozesses.
Der Wechsel zu DevOps in dem Glauben, dass Sie Qualitätsexperten entlassen oder sie einfach zu Entwicklern machen können, führt zu einem Mangel an Testexpertise und hohen Reparaturkosten, da Ihre teuersten Ingenieure all diese Reparaturen durchführen.
– Justyn Trenner, QA Finanzen
Markterprobte, fehlerorientierte Daten
QA Vector Analytics liefert die Erkenntnisse, die Unternehmen nutzen können, um ihre Arbeitsabläufe und Methoden zu optimieren.
Beispiel im Fokus: Fintech
Das obige Bild zeigt, wie gut Unternehmen mit verschiedenen Modellen abgeschnitten haben. Sie werden beispielsweise sehen, dass FinTechs, die das Hybridmodell verwenden, insgesamt sehr gut bei der Fehlervermeidung abgeschnitten haben, wobei triviale Fehler ihr bester Leistungsbereich waren. Betrachtet man jedoch kritische Mängel, schneiden Hybrid-Modell-FinTechs schlecht ab.
Der Grund dafür ist das „Fix-Fast“-Epos, bei dem es ein Veröffentlichungsdatum und nur wenige Tage später ein Veröffentlichungsdatum 2 gibt. Dadurch werden Benutzer zu Testern. Ein riskantes Unterfangen, wenn Sie sich Sorgen über Sicherheitsrisiken, Datenschutzverletzungen und dergleichen machen.
Mit Automatisierung weiterkommen
Wie bei Fallstudien wie der von Parasoft Caesars Entertainment- und Testautomatisierungs-ROI-Messung, liegt der Schwerpunkt darauf, mit QA Vector Analytics den ROI für die Führung zu demonstrieren. Das Ziel, alle drei Punkte des Dreiecks zu erreichen, ist mit diesem neuen Ansatz mehr als möglich. Sorgen Sie dafür, dass Ihr zukünftiges Ich „Danke“ sagt, und investieren Sie in Ihre Qualitätsreise mit API-Tests, Servicevirtualisierung und mehr.